viernes, 16 de julio de 2010

INTRODUCCION A LA TELEINFORMATICA


Las clases de computación en la escuela, el acceso diario de estudiantes ya sea de preparatoria o de la universidad para realizar sus asignaciones a través de INTERNET y comunicarse con sus amigos ya sea vía correo electrónico o vía chat se han ido incrementando en nuestra en la vida diaria del ser humano con una gran facilidad y rapidez.

La telefonía inalámbrica se ha vuelto más popular y la oportunidad de comunicarse sin límites desde cualquier lugar es cada vez más atractiva en la operatividad de los negocios, inclusive ya en muchos países del mundo gran cantidad de personas trabajan desde su casa (Telecommuting) gracias a una nueva infraestructura de manejo de información, la cual posteriormente va a desarrollarse en el concepto de "Oficina Virtual".

Una vez que el usuario virtual se encuentre dentro de la oficina, podrá tener acceso a su INTRANET para "navegar" virtualmente en toda la información que sea de utilidad para el desarrollo de las actividades diarias. La realidad virtual y los servicios de multimedia participan cada vez más en la cultura de visualización y entendimiento de información, proporsionándonos la oportunidad de "entrar" a un mundo de "datos" dentro de la computadora y "transportarnos" en ella hacia donde queramos.

El reconocimiento de voz en los sistemas de cómputo y los diferentes servicios de CTI (Computer Telephony Integration) convertirán a la computadora personal en algo más que una herramienta útil en el proceso de información, la harán indispensable en el manejo de las tareas diarias en la transmisión de voz, datos e imágenes; estos avances tecnológicos en el hogar y en la oficina serán posibles bajo un esquema ordenado de comunicación sin fronteras en conectividad digital.

Toda la información se transmitirá como datos a los diferentes puntos de una red pública o privada, por lo cual es necesario tener una preparación específica para comprender estos cambios de acuerdo a nuestro papel en el desarrollo de los mismos, como usuarios, integradores o diseñadores en este tipo de redes.

REDES


Una red de computadoras, también llamada red de ordenadores o red informática, es un conjunto de equipos conectados por medio de cables, señales, ondas o cualquier otro método de transporte de datos, que comparten información (archivos), recursos (CD-ROM, impresoras, etc.), servicios (acceso a internet, e-mail, chat, juegos), etc. incrementando la eficiencia y productividad de las personas.
Una red de comunicaciones es un conjunto de medios técnicos que permiten la comunicación a distancia entre equipos autónomos (no jerárquica -master/slave-). Normalmente se trata de transmitir datos, audio y vídeo por ondas electromagnéticas a través de diversos medios (aire, vacío, cable de cobre, cable de fibra óptica, etc.).
Para simplificar la comunicación entre programas (aplicaciones) de distintos equipos, se definió el Modelo OSI por la ISO, el cual especifica 7 distintas capas de abstracción. Con ello, cada capa desarrolla una función específica con un alcance definido.

CLASIFICACION DE REDES

• Por alcance:

o Red de área personal (PAN)
o Red de área local (LAN)
o Red de área de campus (CAN)
o Red de área metropolitana (MAN)
o Red de área amplia (WAN)
o Red de área simple (SPL)
o Red de área de almacenamiento (SAN)
• Por método de la conexión:

o Medios guiados: cable coaxial, cable de par trenzado, fibra óptica y otros tipos de cables.
o Medios no guiados: radio, infrarrojos, microondas, láser y otras redes inalámbricas.
• Por relación funcional:
o Cliente-servidor
o Igual-a-Igual (p2p)

Arquitecturas de red.
• Por Topología de red:

o Red en bus
o Red en estrella
o Red en anillo (o doble anillo)
o Red en malla (o totalmente conexa)
o Red en árbol
o Red mixta (cualquier combinación de las anteriores)
• Por la direccionalidad de los datos (tipos de transmisión)
o Simplex (unidireccionales): un Equipo Terminal de Datos transmite y otro recibe. (p. ej. streaming)
o Half-Duplex (bidireccionales): sólo un equipo transmite a la vez. También se llama Semi-Duplex (p. ej. una comunicación por equipos de radio, si los equipos no son full dúplex, uno no podría transmitir (hablar) si la otra persona está también transmitiendo (hablando) porque su equipo estaría recibiendo (escuchando) en ese momento).
o Full-Duplex (bidireccionales): ambos pueden transmitir y recibir a la vez una misma información. (p. ej. videoconferencia).

EQUIPOS DE TRANSMISION DE DATOS


Tipos de Transmisión de Datos

Transmisión Análoga

En un sistema analógico de transmisión tenemos a la salida de este una cantidad que varia continuamente.

En la transmisión analógica, la señal que transporta la información es continua, en la señal digital es discreta. La forma más sencilla de transmisión digital es la binaria, en la cual a cada elemento de información se le asigna uno de dos posibles estados.

Para identificar una gran cantidad de información se codifica un número específico de bits, el cual se conoce como caracter. Esta codificación se usa para la información e escrita.

Ej: Teletipo = Servicio para la transmisión de un telegrama.

La mayor de las computadoras en servicio hoy en día utilizan u operan con el sistema binario por lo cual viene más la transmisión binaria, ya sea de terminal a computadora o de computadora a computadora.

Transmisión Digital

En la transmisión digital existen dos notables ventajas lo cual hace que tenga gran aceptación cuando se compara con la analógica. Estas son:

  • El ruido no se acumula en los repetidores.
  • El formato digital se adapta por si mismo de manera ideal a la tecnología de estado sólido, particularmente en los circuitos integrados.

La mayor parte de la información que se transmite en una red portadora es de naturaleza analógica,http://www.monografias.com/images04/trans.gif

Ej: La voz

El vídeo

Al convertir estas señales al formato digital se pueden aprovechar las dos características anteriormente citadas.

Para transmitir información digital(binaria 0 ó 1) por la red telefónica, la señal digital se convierte a una señal analógica compatible con la el equipo de la red y esta función se realiza en el Módem.

Para hacer lo inverso o sea con la señal analógica, se usan dos métodos diferentes de modulación:

La modulación por codificación de pulsos(MCP).

Es ventajoso transmitir datos en forma binaria en vez de convertirlos a analógico. Sin embargo, la transmisión digital está restringida a canales con un ancho de banda mucho mayor que el de la banda de la voz.

Cable coaxial

El cable coaxial fue creado en la década de los 30, y es un cable utilizado para transportar señales eléctricas de alta frecuencia que posee dos conductores concéntricos, uno central, llamado vivo, encargado de llevar la información, y uno exterior, de aspecto tubular, llamado malla o blindaje, que sirve como referencia de tierra y retorno de las corrientes. Entre ambos se encuentra una capa aislante llamada dieléctrico, de cuyas características dependerá principalmente la calidad del cable. Todo el conjunto suele estar protegido por una cubierta aislante.

El conductor central puede estar constituido por un alambre sólido o por varios hilos retorcidos de cobre; mientras que el exterior puede ser una malla trenzada, una lámina enrollada o un tubo corrugado de cobre o aluminio. En este último caso resultará un cable semirrígido.

Fibra óptica

La fibra óptica es un medio de transmisión empleado habitualmente en redes de datos; un hilo muy fino de material transparente, vidrio o materiales plásticos, por el que se envían pulsos de luz que representan los datos a transmitir. El haz de luz queda completamente confinado y se propaga por el núcleo de la fibra con un ángulo de reflexión por encima del ángulo límite de reflexión total, en función de la ley de Snell. La fuente de luz puede ser láser o un LED.

Las fibras se utilizan ampliamente en telecomunicaciones, ya que permiten enviar gran cantidad de datos a una gran distancia, con velocidades similares a las de radio o cable. Son el medio de transmisión por excelencia al ser inmune a las interferencias electromagneticas, también se utilizan para redes locales, en donde se necesite aprovechar las ventajas de la fibra óptica sobre otros medios de transmisión.

Microondas

Se denomina microondas a las ondas electromagnéticas definidas en un rango de frecuencias determinado; generalmente de entre 300 MHz y 300 GHz, que supone un período de oscilación de 3 ns (3×10-9 s) a 3 ps (3×10-12 s) y una longitud de onda en el rango de 1 m a 1 mm. Otras definiciones, por ejemplo las de los estándares IEC 60050 y IEEE 100 sitúan su rango de frecuencias entre 1 GHz y 300 GHz, es decir, longitudes de onda de entre 1 cm a 100 micrometros

El rango de las microondas está incluido en las bandas de radiofrecuencia, concretamente en las UHF (ultra-high frequency, frecuencia ultra alta en español) (0.3 – 3 GHz), SHF (super-high frequency, frecuencia super alta) (3 – 30 GHz) y EHF (extremely high frequency, frecuencia extremadamente alta) (30 – 300 GHz). Otras bandas de radiofrecuencia incluyen ondas de menor frecuencia y mayor longitud de onda que las microondas. Las microondas de mayor frecuencia y menor longitud de onda —en el orden de milímetros— se denominan ondas milimétricas, radiación terahercio o rayos T.

Infrarrojo

Los enlaces infrarrojos se encuentran limitados por el espacio y los obstáculos. El hecho de que la longitud de onda de los rayos infrarrojos sea tan pequeña (850-900 nm), hace que no pueda propagarse de la misma forma en que lo hacen las señales de radio.

Es por este motivo que las redes infrarrojas suelen estar dirigidas a oficinas o plantas de oficinas de reducido tamaño. Algunas empresas, van un poco más allá, transmitiendo datos de un edificio a otro mediante la colocación de antenas en las ventanas de cada edificio.

Por otro lado, las transmisiones infrarrojas presentan la ventaja, frente a las de radio, de no transmitir a frecuencias bajas, donde el espectro está más limitado, no teniendo que restringir, por tanto, su ancho de banda a las frecuencias libres.

Satélite

Un satélite es cualquier objeto que orbita alrededor de otro, que se denomina principal. Los satélites artificiales son naves espaciales fabricadas en la Tierra y enviadas en un vehículo de lanzamiento, un tipo de cohete que envía una carga útil al espacio exterior.Los satélites artificiales pueden orbitar alrededor de lunas, cometas, asteroides, planetas, estrellas o incluso galaxias. Tras su vida útil, los satélites artificiales pueden quedar orbitando como basura espacial.

CONMUTACION


Conmutación es la conexión que realizan los diferentes nodos que existen en distintos lugares y distancias para lograr un camino apropiado para conectar dos usuarios de una red de telecomunicaciones. La conmutación permite la descongestión entre los usuarios de la red disminuyendo el tráfico y aumentando el ancho de banda.

TIPOS DE CONMUTACION

Conmutación de circuito

Es aquella en la que los equipos de conmutación deben establecer un camino físico entre los medios de comunicación previo a la conexión entre los usuarios. Este camino permanece activo durante la comunicación entre los usuarios, liberándose al terminar la comunicación. Ejemplo: Red Telefónica Conmutada.
Su funcionamiento pasa por las siguientes etapas: solicitud, establecimiento, transferencia de archivos y liberación de conexión.

Ventajas

• La transmisión se realiza en tiempo real, siendo adecuado para comunicación de voz y video.
• Acaparamiento de recursos. Los nodos que intervienen en la comunicación disponen en exclusiva del circuito establecido mientras dura la sesión.
• No hay contención. Una vez que se ha establecido el circuito las partes pueden comunicarse a la máxima velocidad que permita el medio, sin compartir el ancho de banda ni el tiempo de uso.
• El circuito es fijo. Dado que se dedica un circuito físico específicamente para esa sesión de comunicación, una vez establecido el circuito no hay pérdidas de tiempo calculando y tomando decisiones de encaminamiento en los nodos intermedios. Cada nodo intermedio tiene una sola ruta para los paquetes entrantes y salientes que pertenecen a una sesión específica.
• Simplicidad en la gestión de los nodos intermedios. Una vez que se ha establecido el circuito físico, no hay que tomar más decisiones para encaminar los datos entre el origen y el destino.

Desventajas

• Retraso en el inicio de la comunicación. Se necesita un tiempo para realizar la conexión, lo que conlleva un retraso en la transmisión de la información.
• Acaparamiento (bloqueo) de recursos. No se aprovecha el circuito en los instantes de tiempo en que no hay transmisión entre las partes. Se desperdicia ancho de banda mientras las partes no están comunicándose.
• El circuito es fijo. No se reajusta la ruta de comunicación, adaptándola en cada posible instante al camino de menor costo entre los nodos. Una vez que se ha establecido el circuito, no se aprovechan los posibles caminos alternativos con menor coste que puedan surgir durante la sesión.
• Poco tolerante a fallos. Si un nodo intermedio falla, todo el circuito se viene abajo. Hay que volver a establecer conexiones desde el principio.

Conmutación de mensajes

Este método era el usado por los sistemas telegráficos, siendo el más antiguo que existe. Para transmitir un mensaje a un receptor, el emisor debe enviar primero el mensaje completo a un nodo intermedio el cual lo encola en la cola donde almacena los mensajes que le son enviados por otros nodos. Luego, cuando llega su turno, lo reenviará a otro y éste a otro y así las veces que sean necesarias antes de llegar al receptor. El mensaje deberá ser almacenado por completo y de forma temporal en el nodo intermedio antes de poder ser reenviado al siguiente, por lo que los nodos temporales deben tener una gran capacidad de almacenamiento.

Ventajas

• Se multiplexan mensajes de varios procesos hacia un mismo destino, y viceversa, sin que los solicitantes deban esperar a que se libere el circuito
• El canal se libera mucho antes que en la conmutación de circuitos, lo que reduce el tiempo de espera necesario para que otro remitente envíe mensajes.
• No hay circuitos ocupados que estén inactivos. Mejor aprovechamiento del canal.
• Si hay error de comunicación se retransmite una menor cantidad de datos.
• Se añade información extra de encaminamiento (cabecera del mensaje) a la comunicación. Si esta información representa un porcentaje apreciable del tamaño del mensaje el rendimiento del canal (información útil/información transmitida) disminuye.
• Mayor complejidad en los nodos intermedios:
o Ahora necesitan inspeccionar la cabecera de cada mensaje para tomar decisiones de encaminamiento.
o También deben examinar los datos del mensaje para comprobar que se ha recibido sin errores.
o También necesitan disponer de memoria (discos duros) y capacidad de procesamiento para almacenar, verificar y retransmitir el mensaje completo.
• Sigue sin ser viable la comunicación interactiva entre los terminales.
• Si la capacidad de almacenamiento se llena y llega un nuevo mensaje, no puede ser almacenado y se perderá definitivamente.
• Un mensaje puede acaparar una conexión de un nodo a otro mientras transmite un mensaje, lo que lo incapacita para poder ser usado por otros nodos.

Conmutación por paquetes

El emisor divide los mensajes a enviar en un número arbitrario de paquetes del mismo tamaño, donde adjunta una cabecera y la dirección origen y destino así como datos de control que luego serán transmitidos por diferentes medios de conexión entre nodos temporales hasta llegar a su destino. Este método de conmutación es el que más se utiliza en las redes de ordenadores actuales. Surge para optimizar la capacidad de transmisión a través de las líneas existentes.
Al igual que en la conmutación de mensajes, los nodos temporales almacenan los paquetes en colas en sus memorias que no necesitan ser demasiado grandes.

Modos de Conmutación

• Circuito virtual:

o Cada paquete se encamina por el mismo circuito virtual que los anteriores.
o Por tanto se controla y asegura el orden de llegada de los paquetes a destino
• Datagrama
o Cada paquete se encamina de manera independiente de los demás
o Por tanto la red no puede controlar el camino seguido por los paquetes, ni asegurar el orden de llegada a destino.

Ventajas

• Si hay error de comunicación se retransmite una cantidad de datos aun menor que en el caso de mensajes
• En caso de error en un paquete solo se reenvía ese paquete, sin afectar a los demás que llegaron sin error.
• Comunicación interactiva. Al limitar el tamaño máximo del paquete, se asegura que ningún usuario pueda monopolizar una línea de transmisión durante mucho tiempo (microsegundos), por lo que las redes de conmutación de paquetes pueden manejar tráfico interactivo.
• Aumenta la flexibilidad y rentabilidad de la red.
o Se puede alterar sobre la marcha el camino seguido por una comunicación (p.ej. en caso de avería de uno o más enrutadores).
o Se pueden asignar prioridades a los paquetes de una determinada comunicación. Así, un nodo puede seleccionar de su cola de paquetes en espera de ser transmitidos aquellos que tienen mayor prioridad.
• Mayor complejidad en los equipos de conmutación intermedios, que necesitan mayor velocidad y capacidad de cálculo para determinar la ruta adecuada en cada paquete.
• Duplicidad de paquetes. Si un paquete tarda demasiado en llegar a su destino, el host receptor(destino) no enviara el acuse de recibo al emisor, por el cual el host emisor al no recibir un acuse de recibo por parte del receptor este volverá a retransmitir los últimos paquetes del cual no recibió el acuse, pudiendo haber redundancia de datos.
• Si los cálculos de encaminamiento representan un porcentaje apreciable del tiempo de transmisión, el rendimiento del canal (información útil/información transmitida) disminuye.

MODULACION


Modulación engloba el conjunto de técnicas para transportar información sobre una onda portadora, típicamente una onda sinusoidal. Estas técnicas permiten un mejor aprovechamiento del canal de comunicación lo que posibilita transmitir más información en forma simultánea, protegiéndola de posibles interferencias y ruidos.

Básicamente, la modulación consiste en hacer que un parámetro de la onda portadora cambie de valor de acuerdo con las variaciones de la señal moduladora, que es la información que queremos transmitir.

El objetivo de modular una señal, es tener un control sobre la misma. El control se hará sobre ciertos elementos característicos de una oscilación continua; estos son modificados según la forma de onda de la señal que se desea transmitir.

Los parámetros o magnitudes fundamentales de una señal analógica son:

Amplitud

Frecuencia

Fase

Actualmente existe una gran cantidad de tipos de modulación. Algunos son producto de la combinación de varias técnicas de modulación:

Tipo de Modulación

Señales Moduladas

Analógica

Continua

AM: Modulación en Amplitud

FM: Modulación en Frecuencia

PM: Modulación en Fase

Discontinua (por pulsos)

PAM: Modulación por Amplitud de Pulsos

PWM: Modulación por Anchura de Pulso

PPM: Modulación por Posición de Pulso

Radio Frecuencia

ASK: Modulación en Amplitud, Apagado Encendido

FSK: Modulación por Desviación de Frecuencia

PSK: Modulación por Desviación de Fase

Las estaciones de radio de banda de onda larga estándar (540kHz a 1620kHz) utilizan la modulación en amplitud (AM) para transmitir información de audio (voz, música, etc.) en la onda portadora de RF. AM es una mezcla de señales de AF y RF, de manera que las variaciones de amplitud de la señal de AF (modulación) alteran la amplitud de la señal de RF (portadora). La onda modulada de RF tiene la forma simétrica arriba y debajo de la línea de referencia cero. Las frecuencias laterales superior e inferior iguales a la suma y diferencia de las dos frecuencias originales se generan en el proceso de modulación y aparecen en el espectro de frecuencias inmediatamente arriba y debajo de la frecuencia de la portadora. Por ejemplo, si la frecuencia de la portadora es de 1MHz y la frecuencia de modulación es de 1kHz, se producen arriba y debajo de la frecuencia de portadora las frecuencias laterales superior e inferior de 1.001Mhz y 999kHz respectivamente. Si la señal de modulación varía en frecuencia, crea una banda de frecuencias a cada lado de la portadora, conocida como la banda lateral superior y banda lateral inferior. El ancho de banda total de la señal modulada queda determinado por la frecuencia de modulación mas alta y es igual a la suma de las dos bandas laterales. El ancho de canal total de la señal portadora es igual a la frecuencia de portadora más y menos las dos bandas laterales.

Modulación en Frecuencia (FM):

La modulación en frecuencia (FM) es el proceso de combinar una señal de AF (Audio Frecuencia) con otra de RF (Radio Frecuencia) en el rango de frecuencias entre 88MHz y 108MHz, tal que la amplitud de la AF varíe la frecuencia de la RF.

Si la señal de modulación varía en frecuencia, no tiene efecto en las excursiones máxima y mínima de la frecuencia de portadora, sino que solo determina la rapidez o lentitud con que ocurren las variaciones en la frecuencia. Es decir, que una frecuencia mas baja de modulación provoca que ocurran variaciones a una tasa más lenta, y una frecuencia mas alta de modulación hace que ocurran a una tasa más rápida. Sin embargo, las variaciones en amplitud de la señal de modulación si afectan las excursiones máxima y mínima de la frecuencia portadora. Una señal de mayor amplitud provoca un mayor cambio en la frecuencia y una señal más pequeña provoca un cambio menor en la frecuencia.

Bandas de Frecuencias:

El espectro electromagnético está dividido en bandas de frecuencias de radio enlaces conforme a las normas de los organismos reguladores de las comunicaciones mundiales, los cuales son parte de la Unión Internacional de Telecomunicaciones (UIT). Las frecuencias para radiocomunicaciones se definen entre limites bien establecidos y respetados por los diseñadores y usuarios. Las bandas que encuadran las diferentes opciones de radiocomunicación se describen a continuación.

Intervalo de frecuencia

Número de Banda (N=)

Denominación según los adjetivos en inglés

Ondas con denominación métrica

0.3

3

Hz

0



3

30

Hz

1



30

300

Hz

2



300

3000

Hz

3



3

30

kHz

4

VLF

Miriamétricas

30

300

kHz

5

LF

Kilométricas

Centimétricas






30

300

GHz

11

EHF

Milimétricas

300

3000

GHz

12


Decimilimétricas





Infrarrojo

Centimilimétricas





Rojo

Micrométricas





Luz Visible

Decimicrométricas





Ultravioleta

Centrimicrométricas





Ultravioleta lejano

Nanométricas